
yamllint
Release 1.26.0

Jan 29, 2021

Contents

1 Screenshot 3

2 Table of contents 5
2.1 Quickstart . 5
2.2 Configuration . 6
2.3 Rules . 11
2.4 Disable with comments . 36
2.5 Development . 37
2.6 Integration with text editors . 38
2.7 Integration with other software . 38

Python Module Index 41

Index 43

i

ii

yamllint, Release 1.26.0

A linter for YAML files.

yamllint does not only check for syntax validity, but for weirdnesses like key repetition and cosmetic problems such
as lines length, trailing spaces, indentation, etc.

Contents 1

yamllint, Release 1.26.0

2 Contents

CHAPTER 1

Screenshot

Note: The default output format is inspired by eslint, a great linting tool for Javascript.

3

http://eslint.org/

yamllint, Release 1.26.0

4 Chapter 1. Screenshot

CHAPTER 2

Table of contents

2.1 Quickstart

2.1.1 Installing yamllint

On Fedora / CentOS (note: EPEL is required on CentOS):

sudo dnf install yamllint

On Debian 8+ / Ubuntu 16.04+:

sudo apt-get install yamllint

On Mac OS 10.11+:

brew install yamllint

On FreeBSD:

pkg install py36-yamllint

On OpenBSD:

doas pkg_add py3-yamllint

Alternatively using pip, the Python package manager:

pip install --user yamllint

If you prefer installing from source, you can run, from the source directory:

python setup.py sdist
pip install --user dist/yamllint-*.tar.gz

5

https://fedoraproject.org/wiki/EPEL

yamllint, Release 1.26.0

2.1.2 Running yamllint

Basic usage:

yamllint file.yml other-file.yaml

You can also lint all YAML files in a whole directory:

yamllint .

Or lint a YAML stream from standard input:

echo -e 'this: is\nvalid: YAML' | yamllint -

The output will look like (colors are not displayed here):

file.yml
1:4 error trailing spaces (trailing-spaces)
4:4 error wrong indentation: expected 4 but found 3 (indentation)
5:4 error duplication of key "id-00042" in mapping (key-duplicates)
6:6 warning comment not indented like content (comments-indentation)
12:6 error too many spaces after hyphen (hyphens)
15:12 error too many spaces before comma (commas)

other-file.yaml
1:1 warning missing document start "---" (document-start)
6:81 error line too long (87 > 80 characters) (line-length)
10:1 error too many blank lines (4 > 2) (empty-lines)
11:4 error too many spaces inside braces (braces)

By default, the output of yamllint is colored when run from a terminal, and pure text in other cases. Add the -f
standard arguments to force non-colored output. Use the -f colored arguments to force colored output.

Add the -f parsable arguments if you need an output format parsable by a machine (for instance for syntax
highlighting in text editors). The output will then look like:

file.yml:6:2: [warning] missing starting space in comment (comments)
file.yml:57:1: [error] trailing spaces (trailing-spaces)
file.yml:60:3: [error] wrong indentation: expected 4 but found 2 (indentation)

If you have a custom linting configuration file (see how to configure yamllint), it can be passed to yamllint using the
-c option:

yamllint -c ~/myconfig file.yaml

Note: If you have a .yamllint file in your working directory, it will be automatically loaded as configuration by
yamllint.

2.2 Configuration

yamllint uses a set of rules to check source files for problems. Each rule is independent from the others, and can be
enabled, disabled or tweaked. All these settings can be gathered in a configuration file.

To use a custom configuration file, use the -c option:

6 Chapter 2. Table of contents

yamllint, Release 1.26.0

yamllint -c /path/to/myconfig file-to-lint.yaml

If -c is not provided, yamllint will look for a configuration file in the following locations (by order of preference):

• .yamllint, .yamllint.yaml or .yamllint.yml in the current working directory

• the file referenced by $YAMLLINT_CONFIG_FILE, if set

• $XDG_CONFIG_HOME/yamllint/config

• ~/.config/yamllint/config

Finally if no config file is found, the default configuration is applied.

2.2.1 Default configuration

Unless told otherwise, yamllint uses its default configuration:

yaml-files:
- '*.yaml'
- '*.yml'
- '.yamllint'

rules:
braces: enable
brackets: enable
colons: enable
commas: enable
comments:
level: warning

comments-indentation:
level: warning

document-end: disable
document-start:
level: warning

empty-lines: enable
empty-values: disable
hyphens: enable
indentation: enable
key-duplicates: enable
key-ordering: disable
line-length: enable
new-line-at-end-of-file: enable
new-lines: enable
octal-values: disable
quoted-strings: disable
trailing-spaces: enable
truthy:
level: warning

Details on rules can be found on the rules page.

There is another pre-defined configuration named relaxed. As its name suggests, it is more tolerant:

(continues on next page)

2.2. Configuration 7

yamllint, Release 1.26.0

(continued from previous page)

extends: default

rules:
braces:
level: warning
max-spaces-inside: 1

brackets:
level: warning
max-spaces-inside: 1

colons:
level: warning

commas:
level: warning

comments: disable
comments-indentation: disable
document-start: disable
empty-lines:
level: warning

hyphens:
level: warning

indentation:
level: warning
indent-sequences: consistent

line-length:
level: warning
allow-non-breakable-inline-mappings: true

truthy: disable

It can be chosen using:

yamllint -d relaxed file.yml

2.2.2 Extending the default configuration

When writing a custom configuration file, you don’t need to redefine every rule. Just extend the default configura-
tion (or any already-existing configuration file).

For instance, if you just want to disable the comments-indentation rule, your file could look like this:

This is my first, very own configuration file for yamllint!
It extends the default conf by adjusting some options.

extends: default

rules:
comments-indentation: disable # don't bother me with this rule

Similarly, if you want to set the line-length rule as a warning and be less strict on block sequences indentation:

extends: default

rules:
80 chars should be enough, but don't fail if a line is longer
line-length:
max: 80

(continues on next page)

8 Chapter 2. Table of contents

yamllint, Release 1.26.0

(continued from previous page)

level: warning

accept both key:
- item
#
and key:
- item
indentation:
indent-sequences: whatever

2.2.3 Custom configuration without a config file

It is possible – although not recommended – to pass custom configuration options to yamllint with the -d (short for
--config-data) option.

Its content can either be the name of a pre-defined conf (example: default or relaxed) or a serialized YAML
object describing the configuration.

For instance:

yamllint -d "{extends: relaxed, rules: {line-length: {max: 120}}}" file.yaml

2.2.4 Errors and warnings

Problems detected by yamllint can be raised either as errors or as warnings. The CLI will output them (with different
colors when using the colored output format, or auto when run from a terminal).

By default the script will exit with a return code 1 only when there is one or more error(s).

However if strict mode is enabled with the -s (or --strict) option, the return code will be:

• 0 if no errors or warnings occur

• 1 if one or more errors occur

• 2 if no errors occur, but one or more warnings occur

If the script is invoked with the --no-warnings option, it won’t output warning level problems, only error level
ones.

2.2.5 YAML files extensions

To configure what yamllint should consider as YAML files when listing directories, set yaml-files configuration
option. The default is:

yaml-files:
- '*.yaml'
- '*.yml'
- '.yamllint'

The same rules as for ignoring paths apply (.gitignore-style path pattern, see below).

2.2. Configuration 9

yamllint, Release 1.26.0

2.2.6 Ignoring paths

It is possible to exclude specific files or directories, so that the linter doesn’t process them.

You can either totally ignore files (they won’t be looked at):

extends: default

ignore: |
/this/specific/file.yaml
all/this/directory/

*.template.yaml

or ignore paths only for specific rules:

extends: default

rules:
trailing-spaces:
ignore: |

/this-file-has-trailing-spaces-but-it-is-OK.yaml
/generated/*.yaml

Note that this .gitignore-style path pattern allows complex path exclusion/inclusion, see the pathspec README
file for more details. Here is a more complex example:

For all rules
ignore: |

*.dont-lint-me.yaml
/bin/
!/bin/*.lint-me-anyway.yaml

extends: default

rules:
key-duplicates:
ignore: |

generated

*.template.yaml
trailing-spaces:
ignore: |

*.ignore-trailing-spaces.yaml
ascii-art/*

2.2.7 Setting the locale

It is possible to set the locale option globally. This is passed to Python’s locale.setlocale, so an empty string ""
will use the system default locale, while e.g. "en_US.UTF-8" will use that.

Currently this only affects the key-ordering rule. The default will order by Unicode code point number, while
locales will sort case and accents properly as well.

extends: default

locale: en_US.UTF-8

10 Chapter 2. Table of contents

https://pypi.python.org/pypi/pathspec
https://pypi.python.org/pypi/pathspec
https://docs.python.org/3/library/locale.html#locale.setlocale

yamllint, Release 1.26.0

2.3 Rules

When linting a document with yamllint, a series of rules (such as line-length, trailing-spaces, etc.) are
checked against.

A configuration file can be used to enable or disable these rules, to set their level (error or warning), but also to tweak
their options.

This page describes the rules and their options.

List of rules

• braces

• brackets

• colons

• commas

• comments

• comments-indentation

• document-end

• document-start

• empty-lines

• empty-values

• hyphens

• indentation

• key-duplicates

• key-ordering

• line-length

• new-line-at-end-of-file

• new-lines

• octal-values

• quoted-strings

• trailing-spaces

• truthy

2.3.1 braces

Use this rule to control the use of flow mappings or number of spaces inside braces ({ and }).

2.3. Rules 11

yamllint, Release 1.26.0

Options

• forbid is used to forbid the use of flow mappings which are denoted by surrounding braces ({ and }). Use
true to forbid the use of flow mappings completely. Use non-empty to forbid the use of all flow mappings
except for empty ones.

• min-spaces-inside defines the minimal number of spaces required inside braces.

• max-spaces-inside defines the maximal number of spaces allowed inside braces.

• min-spaces-inside-empty defines the minimal number of spaces required inside empty braces.

• max-spaces-inside-empty defines the maximal number of spaces allowed inside empty braces.

Default values (when enabled)

rules:
braces:
forbid: false
min-spaces-inside: 0
max-spaces-inside: 0
min-spaces-inside-empty: -1
max-spaces-inside-empty: -1

Examples

1. With braces: {forbid: true}

the following code snippet would PASS:

object:
key1: 4
key2: 8

the following code snippet would FAIL:

object: { key1: 4, key2: 8 }

2. With braces: {forbid: non-empty}

the following code snippet would PASS:

object: {}

the following code snippet would FAIL:

object: { key1: 4, key2: 8 }

3. With braces: {min-spaces-inside: 0, max-spaces-inside: 0}

the following code snippet would PASS:

object: {key1: 4, key2: 8}

the following code snippet would FAIL:

12 Chapter 2. Table of contents

yamllint, Release 1.26.0

object: { key1: 4, key2: 8 }

4. With braces: {min-spaces-inside: 1, max-spaces-inside: 3}

the following code snippet would PASS:

object: { key1: 4, key2: 8 }

the following code snippet would PASS:

object: { key1: 4, key2: 8 }

the following code snippet would FAIL:

object: { key1: 4, key2: 8 }

the following code snippet would FAIL:

object: {key1: 4, key2: 8 }

5. With braces: {min-spaces-inside-empty: 0, max-spaces-inside-empty: 0}

the following code snippet would PASS:

object: {}

the following code snippet would FAIL:

object: { }

6. With braces: {min-spaces-inside-empty: 1, max-spaces-inside-empty: -1}

the following code snippet would PASS:

object: { }

the following code snippet would FAIL:

object: {}

2.3.2 brackets

Use this rule to control the use of flow sequences or the number of spaces inside brackets ([and]).

Options

• forbid is used to forbid the use of flow sequences which are denoted by surrounding brackets ([and]). Use
true to forbid the use of flow sequences completely. Use non-empty to forbid the use of all flow sequences
except for empty ones.

• min-spaces-inside defines the minimal number of spaces required inside brackets.

• max-spaces-inside defines the maximal number of spaces allowed inside brackets.

• min-spaces-inside-empty defines the minimal number of spaces required inside empty brackets.

• max-spaces-inside-empty defines the maximal number of spaces allowed inside empty brackets.

2.3. Rules 13

yamllint, Release 1.26.0

Default values (when enabled)

rules:
brackets:
forbid: false
min-spaces-inside: 0
max-spaces-inside: 0
min-spaces-inside-empty: -1
max-spaces-inside-empty: -1

Examples

1. With brackets: {forbid: true}

the following code snippet would PASS:

object:
- 1
- 2
- abc

the following code snippet would FAIL:

object: [1, 2, abc]

2. With brackets: {forbid: non-empty}

the following code snippet would PASS:

object: []

the following code snippet would FAIL:

object: [1, 2, abc]

3. With brackets: {min-spaces-inside: 0, max-spaces-inside: 0}

the following code snippet would PASS:

object: [1, 2, abc]

the following code snippet would FAIL:

object: [1, 2, abc]

4. With brackets: {min-spaces-inside: 1, max-spaces-inside: 3}

the following code snippet would PASS:

object: [1, 2, abc]

the following code snippet would PASS:

object: [1, 2, abc]

the following code snippet would FAIL:

14 Chapter 2. Table of contents

yamllint, Release 1.26.0

object: [1, 2, abc]

the following code snippet would FAIL:

object: [1, 2, abc]

5. With brackets: {min-spaces-inside-empty: 0, max-spaces-inside-empty: 0}

the following code snippet would PASS:

object: []

the following code snippet would FAIL:

object: []

6. With brackets: {min-spaces-inside-empty: 1, max-spaces-inside-empty: -1}

the following code snippet would PASS:

object: []

the following code snippet would FAIL:

object: []

2.3.3 colons

Use this rule to control the number of spaces before and after colons (:).

Options

• max-spaces-before defines the maximal number of spaces allowed before colons (use -1 to disable).

• max-spaces-after defines the maximal number of spaces allowed after colons (use -1 to disable).

Default values (when enabled)

rules:
colons:
max-spaces-before: 0
max-spaces-after: 1

Examples

1. With colons: {max-spaces-before: 0, max-spaces-after: 1}

the following code snippet would PASS:

object:
- a
- b

key: value

2.3. Rules 15

yamllint, Release 1.26.0

2. With colons: {max-spaces-before: 1}

the following code snippet would PASS:

object :
- a
- b

the following code snippet would FAIL:

object :
- a
- b

3. With colons: {max-spaces-after: 2}

the following code snippet would PASS:

first: 1
second: 2
third: 3

the following code snippet would FAIL:

first: 1
2nd: 2
third: 3

2.3.4 commas

Use this rule to control the number of spaces before and after commas (,).

Options

• max-spaces-before defines the maximal number of spaces allowed before commas (use -1 to disable).

• min-spaces-after defines the minimal number of spaces required after commas.

• max-spaces-after defines the maximal number of spaces allowed after commas (use -1 to disable).

Default values (when enabled)

rules:
commas:
max-spaces-before: 0
min-spaces-after: 1
max-spaces-after: 1

Examples

1. With commas: {max-spaces-before: 0}

the following code snippet would PASS:

16 Chapter 2. Table of contents

yamllint, Release 1.26.0

strange var:
[10, 20, 30, {x: 1, y: 2}]

the following code snippet would FAIL:

strange var:
[10, 20 , 30, {x: 1, y: 2}]

2. With commas: {max-spaces-before: 2}

the following code snippet would PASS:

strange var:
[10 , 20 , 30, {x: 1 , y: 2}]

3. With commas: {max-spaces-before: -1}

the following code snippet would PASS:

strange var:
[10,
20 , 30
, {x: 1, y: 2}]

4. With commas: {min-spaces-after: 1, max-spaces-after: 1}

the following code snippet would PASS:

strange var:
[10, 20, 30, {x: 1, y: 2}]

the following code snippet would FAIL:

strange var:
[10, 20,30, {x: 1, y: 2}]

5. With commas: {min-spaces-after: 1, max-spaces-after: 3}

the following code snippet would PASS:

strange var:
[10, 20, 30, {x: 1, y: 2}]

6. With commas: {min-spaces-after: 0, max-spaces-after: 1}

the following code snippet would PASS:

strange var:
[10, 20,30, {x: 1, y: 2}]

2.3.5 comments

Use this rule to control the position and formatting of comments.

2.3. Rules 17

yamllint, Release 1.26.0

Options

• Use require-starting-space to require a space character right after the #. Set to true to enable,
false to disable.

• Use ignore-shebangs to ignore a shebang at the beginning of the file when
require-starting-space is set.

• min-spaces-from-content is used to visually separate inline comments from content. It defines the
minimal required number of spaces between a comment and its preceding content.

Default values (when enabled)

rules:
comments:
require-starting-space: true
ignore-shebangs: true
min-spaces-from-content: 2

Examples

1. With comments: {require-starting-space: true}

the following code snippet would PASS:

This sentence
is a block comment

the following code snippet would PASS:

##############################
This is some documentation

the following code snippet would FAIL:

#This sentence
#is a block comment

2. With comments: {min-spaces-from-content: 2}

the following code snippet would PASS:

x = 2 ^ 127 - 1 # Mersenne prime number

the following code snippet would FAIL:

x = 2 ^ 127 - 1 # Mersenne prime number

2.3.6 comments-indentation

Use this rule to force comments to be indented like content.

18 Chapter 2. Table of contents

https://en.wikipedia.org/wiki/Shebang_(Unix)

yamllint, Release 1.26.0

Examples

1. With comments-indentation: {}

the following code snippet would PASS:

Fibonacci
[0, 1, 1, 2, 3, 5]

the following code snippet would FAIL:

Fibonacci
[0, 1, 1, 2, 3, 5]

the following code snippet would PASS:

list:
- 2
- 3
- 4
- 5

the following code snippet would FAIL:

list:
- 2
- 3

- 4
- 5

the following code snippet would PASS:

This is the first object
obj1:
- item A
- item B

This is the second object
obj2: []

the following code snippet would PASS:

This sentence
is a block comment

the following code snippet would FAIL:

This sentence
is a block comment

2.3.7 document-end

Use this rule to require or forbid the use of document end marker (...).

Options

• Set present to true when the document end marker is required, or to false when it is forbidden.

2.3. Rules 19

yamllint, Release 1.26.0

Default values (when enabled)

rules:
document-end:
present: true

Examples

1. With document-end: {present: true}

the following code snippet would PASS:

this:
is: [a, document]

...

- this
- is: another one
...

the following code snippet would FAIL:

this:
is: [a, document]

- this
- is: another one
...

2. With document-end: {present: false}

the following code snippet would PASS:

this:
is: [a, document]

- this
- is: another one

the following code snippet would FAIL:

this:
is: [a, document]

...

- this
- is: another one

2.3.8 document-start

Use this rule to require or forbid the use of document start marker (---).

20 Chapter 2. Table of contents

yamllint, Release 1.26.0

Options

• Set present to true when the document start marker is required, or to false when it is forbidden.

Default values (when enabled)

rules:
document-start:
present: true

Examples

1. With document-start: {present: true}

the following code snippet would PASS:

this:
is: [a, document]

- this
- is: another one

the following code snippet would FAIL:

this:
is: [a, document]

- this
- is: another one

2. With document-start: {present: false}

the following code snippet would PASS:

this:
is: [a, document]

...

the following code snippet would FAIL:

this:
is: [a, document]

...

2.3.9 empty-lines

Use this rule to set a maximal number of allowed consecutive blank lines.

Options

• max defines the maximal number of empty lines allowed in the document.

2.3. Rules 21

yamllint, Release 1.26.0

• max-start defines the maximal number of empty lines allowed at the beginning of the file. This option takes
precedence over max.

• max-end defines the maximal number of empty lines allowed at the end of the file. This option takes prece-
dence over max.

Default values (when enabled)

rules:
empty-lines:
max: 2
max-start: 0
max-end: 0

Examples

1. With empty-lines: {max: 1}

the following code snippet would PASS:

- foo:
- 1
- 2

- bar: [3, 4]

the following code snippet would FAIL:

- foo:
- 1
- 2

- bar: [3, 4]

2.3.10 empty-values

Use this rule to prevent nodes with empty content, that implicitly result in null values.

Options

• Use forbid-in-block-mappings to prevent empty values in block mappings.

• Use forbid-in-flow-mappings to prevent empty values in flow mappings.

Default values (when enabled)

rules:
empty-values:
forbid-in-block-mappings: true
forbid-in-flow-mappings: true

22 Chapter 2. Table of contents

yamllint, Release 1.26.0

Examples

1. With empty-values: {forbid-in-block-mappings: true}

the following code snippets would PASS:

some-mapping:
sub-element: correctly indented

explicitly-null: null

the following code snippets would FAIL:

some-mapping:
sub-element: incorrectly indented

implicitly-null:

2. With empty-values: {forbid-in-flow-mappings: true}

the following code snippet would PASS:

{prop: null}
{a: 1, b: 2, c: 3}

the following code snippets would FAIL:

{prop: }

{a: 1, b:, c: 3}

2.3.11 hyphens

Use this rule to control the number of spaces after hyphens (-).

Options

• max-spaces-after defines the maximal number of spaces allowed after hyphens.

Default values (when enabled)

rules:
hyphens:
max-spaces-after: 1

Examples

1. With hyphens: {max-spaces-after: 1}

the following code snippet would PASS:

2.3. Rules 23

yamllint, Release 1.26.0

- first list:
- a
- b

- - 1
- 2
- 3

the following code snippet would FAIL:

- first list:
- a
- b

the following code snippet would FAIL:

- - 1
- 2
- 3

2. With hyphens: {max-spaces-after: 3}

the following code snippet would PASS:

- key
- key2
- key42

the following code snippet would FAIL:

- key
- key2
- key42

2.3.12 indentation

Use this rule to control the indentation.

Options

• spaces defines the indentation width, in spaces. Set either to an integer (e.g. 2 or 4, representing the number
of spaces in an indentation level) or to consistent to allow any number, as long as it remains the same within
the file.

• indent-sequences defines whether block sequences should be indented or not (when in a mapping, this
indentation is not mandatory – some people perceive the - as part of the indentation). Possible values: true,
false, whatever and consistent. consistent requires either all block sequences to be indented, or
none to be. whatever means either indenting or not indenting individual block sequences is OK.

• check-multi-line-strings defines whether to lint indentation in multi-line strings. Set to true to
enable, false to disable.

24 Chapter 2. Table of contents

yamllint, Release 1.26.0

Default values (when enabled)

rules:
indentation:
spaces: consistent
indent-sequences: true
check-multi-line-strings: false

Examples

1. With indentation: {spaces: 1}

the following code snippet would PASS:

history:
- name: Unix

date: 1969
- name: Linux

date: 1991
nest:
recurse:
- haystack:

needle

2. With indentation: {spaces: 4}

the following code snippet would PASS:

history:
- name: Unix
date: 1969

- name: Linux
date: 1991

nest:
recurse:

- haystack:
needle

the following code snippet would FAIL:

history:
- name: Unix

date: 1969
- name: Linux

date: 1991
nest:
recurse:

- haystack:
needle

3. With indentation: {spaces: consistent}

the following code snippet would PASS:

history:
- name: Unix

date: 1969

(continues on next page)

2.3. Rules 25

yamllint, Release 1.26.0

(continued from previous page)

- name: Linux
date: 1991

nest:
recurse:

- haystack:
needle

the following code snippet would FAIL:

some:
Russian:

dolls

4. With indentation: {spaces: 2, indent-sequences: false}

the following code snippet would PASS:

list:
- flying
- spaghetti
- monster

the following code snippet would FAIL:

list:
- flying
- spaghetti
- monster

5. With indentation: {spaces: 2, indent-sequences: whatever}

the following code snippet would PASS:

list:
- flying:
- spaghetti
- monster

- not flying:
- spaghetti
- sauce

6. With indentation: {spaces: 2, indent-sequences: consistent}

the following code snippet would PASS:

- flying:
- spaghetti
- monster

- not flying:
- spaghetti
- sauce

the following code snippet would FAIL:

- flying:
- spaghetti
- monster

(continues on next page)

26 Chapter 2. Table of contents

yamllint, Release 1.26.0

(continued from previous page)

- not flying:
- spaghetti
- sauce

7. With indentation: {spaces: 4, check-multi-line-strings: true}

the following code snippet would PASS:

Blaise Pascal:
Je vous écris une longue lettre parce que
je n'ai pas le temps d'en écrire une courte.

the following code snippet would PASS:

Blaise Pascal: Je vous écris une longue lettre parce que
je n'ai pas le temps d'en écrire une courte.

the following code snippet would FAIL:

Blaise Pascal: Je vous écris une longue lettre parce que
je n'ai pas le temps d'en écrire une courte.

the following code snippet would FAIL:

C code:
void main() {

printf("foo");
}

the following code snippet would PASS:

C code:
void main() {
printf("bar");
}

2.3.13 key-duplicates

Use this rule to prevent multiple entries with the same key in mappings.

Examples

1. With key-duplicates: {}

the following code snippet would PASS:

- key 1: v
key 2: val
key 3: value

- {a: 1, b: 2, c: 3}

the following code snippet would FAIL:

2.3. Rules 27

yamllint, Release 1.26.0

- key 1: v
key 2: val
key 1: value

the following code snippet would FAIL:

- {a: 1, b: 2, b: 3}

the following code snippet would FAIL:

duplicated key: 1
"duplicated key": 2

other duplication: 1
? >-

other
duplication

: 2

2.3.14 key-ordering

Use this rule to enforce alphabetical ordering of keys in mappings. The sorting order uses the Unicode code point
number as a default. As a result, the ordering is case-sensitive and not accent-friendly (see examples below). This can
be changed by setting the global locale option. This allows to sort case and accents properly.

Examples

1. With key-ordering: {}

the following code snippet would PASS:

- key 1: v
key 2: val
key 3: value

- {a: 1, b: 2, c: 3}
- T-shirt: 1
T-shirts: 2
t-shirt: 3
t-shirts: 4

- hair: true
hais: true
haïr: true
haïssable: true

the following code snippet would FAIL:

- key 2: v
key 1: val

the following code snippet would FAIL:

- {b: 1, a: 2}

the following code snippet would FAIL:

28 Chapter 2. Table of contents

yamllint, Release 1.26.0

- T-shirt: 1
t-shirt: 2
T-shirts: 3
t-shirts: 4

the following code snippet would FAIL:

- haïr: true
hais: true

2. With global option locale: "en_US.UTF-8" and rule key-ordering: {}

as opposed to before, the following code snippet would now PASS:

- t-shirt: 1
T-shirt: 2
t-shirts: 3
T-shirts: 4

- hair: true
haïr: true
hais: true
haïssable: true

2.3.15 line-length

Use this rule to set a limit to lines length.

Options

• max defines the maximal (inclusive) length of lines.

• allow-non-breakable-words is used to allow non breakable words (without spaces inside) to overflow
the limit. This is useful for long URLs, for instance. Use true to allow, false to forbid.

• allow-non-breakable-inline-mappings implies allow-non-breakable-words and extends
it to also allow non-breakable words in inline mappings.

Default values (when enabled)

rules:
line-length:
max: 80
allow-non-breakable-words: true
allow-non-breakable-inline-mappings: false

Examples

1. With line-length: {max: 70}

the following code snippet would PASS:

2.3. Rules 29

yamllint, Release 1.26.0

long sentence:
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

the following code snippet would FAIL:

long sentence:
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.

2. With line-length: {max: 60, allow-non-breakable-words: true}

the following code snippet would PASS:

this:
is:

- a:
http://localhost/very/very/very/very/very/very/very/very/long/url

this comment is too long,
but hard to split:
http://localhost/another/very/very/very/very/very/very/very/very/long/url

the following code snippet would FAIL:

- this line is waaaaaaaaaaaaaay too long but could be easily split...

and the following code snippet would also FAIL:

- foobar: http://localhost/very/very/very/very/very/very/very/very/long/url

3. With line-length: {max: 60, allow-non-breakable-words: true,
allow-non-breakable-inline-mappings: true}

the following code snippet would PASS:

- foobar: http://localhost/very/very/very/very/very/very/very/very/long/url

4. With line-length: {max: 60, allow-non-breakable-words: false}

the following code snippet would FAIL:

this:
is:

- a:
http://localhost/very/very/very/very/very/very/very/very/long/url

2.3.16 new-line-at-end-of-file

Use this rule to require a new line character (\n) at the end of files.

The POSIX standard requires the last line to end with a new line character. All UNIX tools expect a new line at the
end of files. Most text editors use this convention too.

2.3.17 new-lines

Use this rule to force the type of new line characters.

30 Chapter 2. Table of contents

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_206

yamllint, Release 1.26.0

Options

• Set type to unix to use UNIX-typed new line characters (\n), or dos to use DOS-typed new line characters
(\r\n).

Default values (when enabled)

rules:
new-lines:
type: unix

2.3.18 octal-values

Use this rule to prevent values with octal numbers. In YAML, numbers that start with 0 are interpreted as octal, but
this is not always wanted. For instance 010 is the city code of Beijing, and should not be converted to 8.

Options

• Use forbid-implicit-octal to prevent numbers starting with 0.

• Use forbid-explicit-octal to prevent numbers starting with 0o.

Default values (when enabled)

rules:
octal-values:
forbid-implicit-octal: true
forbid-explicit-octal: true

Examples

1. With octal-values: {forbid-implicit-octal: true}

the following code snippets would PASS:

user:
city-code: '010'

the following code snippets would PASS:

user:
city-code: 010,021

the following code snippets would FAIL:

user:
city-code: 010

2. With octal-values: {forbid-explicit-octal: true}

the following code snippets would PASS:

2.3. Rules 31

yamllint, Release 1.26.0

user:
city-code: '0o10'

the following code snippets would FAIL:

user:
city-code: 0o10

2.3.19 quoted-strings

Use this rule to forbid any string values that are not quoted, or to prevent quoted strings without needing it. You can
also enforce the type of the quote used.

Options

• quote-type defines allowed quotes: single, double or any (default).

• required defines whether using quotes in string values is required (true, default) or not (false), or only
allowed when really needed (only-when-needed).

• extra-required is a list of PCRE regexes to force string values to be quoted, if they match any regex. This
option can only be used with required: false and required: only-when-needed.

• extra-allowed is a list of PCRE regexes to allow quoted string values, even if required:
only-when-needed is set.

Note: Multi-line strings (with | or >) will not be checked.

Default values (when enabled)

rules:
quoted-strings:
quote-type: any
required: true
extra-required: []
extra-allowed: []

Examples

1. With quoted-strings: {quote-type: any, required: true}

the following code snippet would PASS:

foo: "bar"
bar: 'foo'
number: 123
boolean: true

the following code snippet would FAIL:

foo: bar

32 Chapter 2. Table of contents

yamllint, Release 1.26.0

2. With quoted-strings: {quote-type: single, required: only-when-needed}

the following code snippet would PASS:

foo: bar
bar: foo
not_number: '123'
not_boolean: 'true'
not_comment: '# comment'
not_list: '[1, 2, 3]'
not_map: '{a: 1, b: 2}'

the following code snippet would FAIL:

foo: 'bar'

3. With quoted-strings: {required: false, extra-required: [^http://,
^ftp://]}

the following code snippet would PASS:

- localhost
- "localhost"
- "http://localhost"
- "ftp://localhost"

the following code snippet would FAIL:

- http://localhost
- ftp://localhost

4. With quoted-strings: {required: only-when-needed, extra-allowed:
[^http://, ^ftp://], extra-required: [QUOTED]}

the following code snippet would PASS:

- localhost
- "http://localhost"
- "ftp://localhost"
- "this is a string that needs to be QUOTED"

the following code snippet would FAIL:

- "localhost"
- this is a string that needs to be QUOTED

2.3.20 trailing-spaces

Use this rule to forbid trailing spaces at the end of lines.

Examples

1. With trailing-spaces: {}

the following code snippet would PASS:

2.3. Rules 33

yamllint, Release 1.26.0

this document doesn't contain
any trailing
spaces

the following code snippet would FAIL:

this document contains
trailing spaces
on lines 1 and 3

2.3.21 truthy

Use this rule to forbid non-explictly typed truthy values other than allowed ones (by default: true and false), for
example YES or off.

This can be useful to prevent surprises from YAML parsers transforming [yes, FALSE, Off] into [true,
false, false] or {y: 1, yes: 2, on: 3, true: 4, True: 5} into {y: 1, true:
5}.

Options

• allowed-values defines the list of truthy values which will be ignored during linting. The default is
['true', 'false'], but can be changed to any list containing: 'TRUE', 'True', 'true', 'FALSE',
'False', 'false', 'YES', 'Yes', 'yes', 'NO', 'No', 'no', 'ON', 'On', 'on', 'OFF', 'Off',
'off'.

• check-keys disables verification for keys in mappings. By default, truthy rule applies to both keys and
values. Set this option to false to prevent this.

Default values (when enabled)

rules:
truthy:
allowed-values: ['true', 'false']
check-keys: true

Examples

1. With truthy: {}

the following code snippet would PASS:

boolean: true

object: {"True": 1, 1: "True"}

"yes": 1
"on": 2
"True": 3

explicit:
string1: !!str True

(continues on next page)

34 Chapter 2. Table of contents

yamllint, Release 1.26.0

(continued from previous page)

string2: !!str yes
string3: !!str off
encoded: !!binary |

True
OFF
pad== # this decodes as 'N»8Qii'

boolean1: !!bool true
boolean2: !!bool "false"
boolean3: !!bool FALSE
boolean4: !!bool True
boolean5: !!bool off
boolean6: !!bool NO

the following code snippet would FAIL:

object: {True: 1, 1: True}

the following code snippet would FAIL:

yes: 1
on: 2
True: 3

2. With truthy: {allowed-values: ["yes", "no"]}

the following code snippet would PASS:

- yes
- no
- "true"
- 'false'
- foo
- bar

the following code snippet would FAIL:

- true
- false
- on
- off

3. With truthy: {check-keys: false}

the following code snippet would PASS:

yes: 1
on: 2
true: 3

the following code snippet would FAIL:

yes: Yes
on: On
true: True

2.3. Rules 35

yamllint, Release 1.26.0

2.4 Disable with comments

2.4.1 Disabling checks for a specific line

To prevent yamllint from reporting problems for a specific line, add a directive comment (# yamllint
disable-line ...) on that line, or on the line above. For instance:

The following mapping contains the same key twice,
but I know what I'm doing:
key: value 1
key: value 2 # yamllint disable-line rule:key-duplicates

- This line is waaaaaaaaaay too long but yamllint will not report anything about it.
→˓# yamllint disable-line rule:line-length
This line will be checked by yamllint.

or:

The following mapping contains the same key twice,
but I know what I'm doing:
key: value 1
yamllint disable-line rule:key-duplicates
key: value 2

yamllint disable-line rule:line-length
- This line is waaaaaaaaaay too long but yamllint will not report anything about it.

This line will be checked by yamllint.

It is possible, although not recommend, to disabled all rules for a specific line:

yamllint disable-line
- { all : rules ,are disabled for this line}

If you need to disable multiple rules, it is allowed to chain rules like this: # yamllint disable-line
rule:hyphens rule:commas rule:indentation.

2.4.2 Disabling checks for all (or part of) the file

To prevent yamllint from reporting problems for the whole file, or for a block of lines within the file, use # yamllint
disable ... and # yamllint enable ... directive comments. For instance:

yamllint disable rule:colons
- Lorem : ipsum

dolor : sit amet,
consectetur : adipiscing elit

yamllint enable rule:colons

- rest of the document...

It is possible, although not recommend, to disabled all rules:

yamllint disable
- Lorem :

ipsum:
dolor : [sit,amet]

(continues on next page)

36 Chapter 2. Table of contents

yamllint, Release 1.26.0

(continued from previous page)

- consectetur : adipiscing elit
yamllint enable

If you need to disable multiple rules, it is allowed to chain rules like this: # yamllint disable
rule:hyphens rule:commas rule:indentation.

2.4.3 Disabling all checks for a file

To prevent yamllint from reporting problems for a specific file, add the directive comment # yamllint
disable-file as the first line of the file. For instance:

yamllint disable-file
The following mapping contains the same key twice, but I know what I'm doing:
key: value 1
key: value 2

- This line is waaaaaaaaaay too long but yamllint will not report anything about it.
This line will be checked by yamllint.

or:

yamllint disable-file
This file is not valid YAML because it is a Jinja template
{% if extra_info %}
key1: value1
{% endif %}
key2: value2

2.5 Development

yamllint provides both a script and a Python module. The latter can be used to write your own linting tools.

Basic example of running the linter from Python:

import yamllint

yaml_config = yamllint.config.YamlLintConfig("extends: default")
for p in yamllint.linter.run("example.yaml", yaml_config):

print(p.desc, p.line, p.rule)

class yamllint.linter.LintProblem(line, column, desc=’<no description>’, rule=None)
Represents a linting problem found by yamllint.

column = None
Column on which the problem was found (starting at 1)

desc = None
Human-readable description of the problem

line = None
Line on which the problem was found (starting at 1)

rule = None
Identifier of the rule that detected the problem

2.5. Development 37

yamllint, Release 1.26.0

yamllint.linter.run(input, conf, filepath=None)
Lints a YAML source.

Returns a generator of LintProblem objects.

Parameters

• input – buffer, string or stream to read from

• conf – yamllint configuration object

2.6 Integration with text editors

Most text editors support syntax checking and highlighting, to visually report syntax errors and warnings to the user.
yamllint can be used to syntax-check YAML source, but a bit of configuration is required depending on your favorite
text editor.

2.6.1 Vim

Assuming that the ALE plugin is installed, yamllint is supported by default. It is automatically enabled when editing
YAML files.

If you instead use the syntastic plugin, add this to your .vimrc:

let g:syntastic_yaml_checkers = ['yamllint']

2.6.2 Neovim

Assuming that the neomake plugin is installed, yamllint is supported by default. It is automatically enabled when
editing YAML files.

2.6.3 Emacs

If you are flycheck user, you can use flycheck-yamllint integration.

2.6.4 Other text editors

Help wanted!

Your favorite text editor is not listed here? Help us improve by adding a section (by opening a pull-request or issue on
GitHub).

2.7 Integration with other software

2.7.1 Integration with pre-commit

You can integrate yamllint in pre-commit tool. Here is an example, to add in your .pre-commit-config.yaml

38 Chapter 2. Table of contents

https://github.com/w0rp/ale
https://github.com/scrooloose/syntastic
https://github.com/benekastah/neomake
https://github.com/flycheck/flycheck
https://github.com/krzysztof-magosa/flycheck-yamllint
http://pre-commit.com/

yamllint, Release 1.26.0

Update the rev variable with the release version that you want, from the yamllint
→˓repo
You can pass your custom .yamllint with args attribute.
- repo: https://github.com/adrienverge/yamllint.git

rev: v1.17.0
hooks:
- id: yamllint

args: [-c=/path/to/.yamllint]

2.7.2 Integration with GitHub Actions

yamllint auto-detects when it’s running inside of GitHub Actions<https://github.com/features/actions> and automati-
cally uses the suited output format to decorate code with linting errors automatically. You can also force the GitHub
Actions output with yamllint --format github.

An example workflow using GitHub Actions:

name: yamllint test

on: push

jobs:
test:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v2

- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.8

- name: Install yamllint
run: pip install yamllint

- name: Lint YAML files
run: yamllint .

2.7.3 Integration with Arcanist

You can configure yamllint to run on arc lint. Here is an example .arclint file that makes use of this configu-
ration.

{
"linters": {
"yamllint": {

"type": "script-and-regex",
"script-and-regex.script": "yamllint",
"script-and-regex.regex": "/^(?P<line>\\d+):(?P<offset>\\d+) +(?P<severity>

→˓warning|error) +(?P<message>.*) +\\((?P<name>.*)\\)$/m",
"include": "(\\.(yml|yaml)$)"

}

(continues on next page)

2.7. Integration with other software 39

yamllint, Release 1.26.0

(continued from previous page)

}
}

40 Chapter 2. Table of contents

Python Module Index

y
yamllint, ??
yamllint.linter, 37
yamllint.rules.braces, 11
yamllint.rules.brackets, 13
yamllint.rules.colons, 15
yamllint.rules.commas, 16
yamllint.rules.comments, 17
yamllint.rules.comments_indentation, 18
yamllint.rules.document_end, 19
yamllint.rules.document_start, 20
yamllint.rules.empty_lines, 21
yamllint.rules.empty_values, 22
yamllint.rules.hyphens, 23
yamllint.rules.indentation, 24
yamllint.rules.key_duplicates, 27
yamllint.rules.key_ordering, 28
yamllint.rules.line_length, 29
yamllint.rules.new_line_at_end_of_file,

30
yamllint.rules.new_lines, 30
yamllint.rules.octal_values, 31
yamllint.rules.quoted_strings, 32
yamllint.rules.trailing_spaces, 33
yamllint.rules.truthy, 34

41

yamllint, Release 1.26.0

42 Python Module Index

Index

C
column (yamllint.linter.LintProblem attribute), 37

D
desc (yamllint.linter.LintProblem attribute), 37

L
line (yamllint.linter.LintProblem attribute), 37
LintProblem (class in yamllint.linter), 37

R
rule (yamllint.linter.LintProblem attribute), 37
run() (in module yamllint.linter), 37

Y
yamllint (module), 1
yamllint.linter (module), 37
yamllint.rules.braces (module), 11
yamllint.rules.brackets (module), 13
yamllint.rules.colons (module), 15
yamllint.rules.commas (module), 16
yamllint.rules.comments (module), 17
yamllint.rules.comments_indentation

(module), 18
yamllint.rules.document_end (module), 19
yamllint.rules.document_start (module), 20
yamllint.rules.empty_lines (module), 21
yamllint.rules.empty_values (module), 22
yamllint.rules.hyphens (module), 23
yamllint.rules.indentation (module), 24
yamllint.rules.key_duplicates (module), 27
yamllint.rules.key_ordering (module), 28
yamllint.rules.line_length (module), 29
yamllint.rules.new_line_at_end_of_file

(module), 30
yamllint.rules.new_lines (module), 30
yamllint.rules.octal_values (module), 31
yamllint.rules.quoted_strings (module), 32

yamllint.rules.trailing_spaces (module),
33

yamllint.rules.truthy (module), 34

43

	Screenshot
	Table of contents
	Quickstart
	Configuration
	Rules
	Disable with comments
	Development
	Integration with text editors
	Integration with other software

	Python Module Index
	Index

